Unsupervised Multispectral Classification

ثبت نشده
چکیده

Unsupervised classification techniques share a common intent to uncover the major land cover classes that exist in the image without prior knowledge of what they might be. Generically, such procedures fall into the realm of cluster analysis since they search for clusters of pixels with similar reflectance characteristics in a multi–band image. All of them are also generalizations of land cover occurrence since they are concerned with uncovering the major land cover classes and thus tend to ignore those that have very low frequencies of occurrence. However, given these broad commonalities, there is little else that they share in common. There are almost as many approaches to clustering as there are Image Processing systems on the market. Idrisi Selva is no exception. The primary unsupervised procedure it offers is unique (CLUSTER). However, it also offers a variant on one of the most common procedures to be found (lSOCLUST). As implemented here, this procedure is really an iterative combination of unsupervised and supervised procedures, as is also the case with the third procedure offered, MAXSFT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An unsupervised marker image generation method for watershed segmen- tation of multispectral imagery

Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformati...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Remotely Sensed LANDSAT Image Classification Using Neural Network Approaches

In paper, LANDSAT multispectral image is classified using several unsupervised and supervised techniques. Pixel-by-pixel classification approaches proved to be infeasible as well as time consuming in case of multispectral images. To overcome this, instead of classifying each pixel, feature based classification approach is used. Three supervised techniques namely, k-NN, BPNN and PCNN are investi...

متن کامل

A New Application of Pixel Purity Index to Unsupervised Multispectral Image Classification

Two major challenging issues arise in unsupervised classification. One is how to generate desired knowledge directly from the data in an unsupervised manner. The other is how to find an appropriate follow-up classifier to use the obtained unsupervised knowledge to perform supervised classification. This paper presents a new approach to unsupervised classification for multispectral imagery. To a...

متن کامل

Unsupervised Classification of Changes in Multispectral Satellite Imagery

The statistical techniques of multivariate alteration detection, maximum autocorrelation factor transformation, expectation maximization, fuzzy maximum likelihood estimation and probabilistic label relaxation are combined in a unified scheme to classify changes in multispectral satellite data. An example involving bitemporal LANDSAT TM imagery is given.

متن کامل

Unsupervised Segmentation of Multispectral Images with Cellular Automata

Multispectral images acquired by satellites are used to study phenomena on the Earth’s surface. Unsupervised classification techniques analyze multispectral image content without considering prior knowledge of the observed terrain; this is done using techniques which group pixels that have similar statistics of digital level distribution in the various image channels. In this paper, we propose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015